
An architecture for CFD Workflow Management
Claudio Gargiulo

R&D - Aerothermal CFD
Fiat Group Automobiles, Italy

Email: claudio.gargiulo@fiat.com

Donato Pirozzi
ISISLab, Dip. di Informatica
Università di Salerno, Italy
Email: dpirozzi@unisa.it

Vittorio Scarano
ISISLab, Dip. di Informatica
Università di Salerno, Italy
Email: vitsca@dia.unisa.it

Abstract—Nowadays, to design product impacted by fluid flow,
industries use Computational Fluid Dynamics (CFD) to get a
better insight into product behaviour. In this paper, we present
a system architecture design for CFD Workflow management.
Index Terms—Architecture, CFD, CFD Workflow, management

I. INTRODUCTION

Computational Fluid Dynamics (CFD) is computer numeri-
cal simulation able to solve and analyse problems that involve
fluid flow, heat transfers and related physical phenomena. Ac-
tually, it is used in many industrial sectors such as automotive,
aerospace, high tech, oil/gas and so on. Today, industries un-
derstand the advantages of using CFD simulations during the
product development process especially when their products
are impacted by fluid flow, heating, cooling and so on [1].
The manufacturers’ goal is to bring high quality products to
the market quickly, keeping the costs down. The top external
pressure factors that lead the product development are: time-
to-market, quality and cost [2]. These factors are often in
conflict together [3]. Products are becoming more complex.
They have a high number of components and configurations.
Brands offer many options and the customers can combine
the options together to get their configuration [4]. Engineers
need to understand how the components interact together and
to assess the performance of each configuration under many
physics conditions. The prototypes and the infrastructure that
are required to asses the prototype performances (e.g. the wind
tunnel for the automotive sector) are expensive. So, it is often
expensive and time-consuming to assess the product behaviour
for every physics condition within the budget constraints,
especially for the extreme conditions.

A benefit of using computer simulations is a reduction of
the number of the physical prototypes that leads to a cost
reduction. According to the market research “Engineering
Evolved” [3] three or more different types of simulations are
able to reduce the number of prototypes by 37% and CFD
is one type of simulation [2]. CFD simulations are able to
reduce the number of physical prototypes [3], to manage the
overall product system complexity and to get a better insight
into product behaviour since the initial development process
stages [2].

Standard CFD Workflow phases are shown diagrammati-
cally in Fig. 1: pre-processing, solving and post-processing
phases. Industries are looking for an increasingly integration
of the CFD Workflow into the business process [5]. This
integration heavily depends on internal team organization,

industry’s best practices, the product development plan and in-
dustry’s policies. Of course, CFD software are designed so that
they focus mainly on the CFD simulations; business process
integration is not their main goal and, it is often completely
ignored. The main benefit of integrating CFD Workflow into
processes is to promote collaboration between CFD engineers,
design engineers and analysts [2]. In an industrial context,
CFD simulations are just a part of a more wide and complex
product development process, so engineers perform additional
tasks to standard CFD Workflow. For some products, design
and CFD tasks can sometimes be done by the same team,
using integrated products (like SolidWorks and CATIA). In
the automotive industry (and in other fields like aerospace)
the teams are different and therefore the CFD workflow is
distinct from design. Besides, in the automotive industry CFD
engineers perform different types of CFD simulations on the
same product (i.e. external aerodynamics, aeroacustics, air
conditioning and engine thermal analysis), so they need to use
different CFD software because each one is validated for its
own area of application. We observed that many engineers’
tasks are repetitive, error-prone and time-consuming (e.g.
find and compare simulations results, document generation,
parametric studies) and they can be automated. Another issue
is the simulation data and results accessibility. All engineers,
both CFD and design engineers, must have full and user-
friendly access to centrally managed simulation results.

Fig. 1. CFD Workflow.

Our paper presents and validates a flexible architecture to
manage the CFD Workflow. Our idea is to design and develop
an architecture that enables the creation of tools to use within
CFD Workflow. Architecture is the foundation for all future
services upon existing CFD software.



The paper is organized as follows. Section II presents both
functional and non-functional requirements for the system to
design and it also reports some aspects of engineers’ tasks to
automate. Section III describes designed architecture to meet
non-functional requirements. Section IV presents Floasys the
prototype of the architecture that we are developing and some
built tools.

II. MANAGING CFD WORKFLOW

During the last year we have worked closely with a team of
professionals that extensively use CFD, analysing their needs
and supporting many of the findings and suggestions from lit-
erature and recent survey in the field. The professional team is
composed by four highly skilled engineers with a strong CFD
experience. They work in the automotive industry and they are
not computer scientists. The issues that we are facing within
automotive sector seem to be very common issues also in other
sectors. Aberdeen Group market research [2], through a survey
and interviews, has studied the experiences of 704 companies
about the use of CFD to design products. Companies belong
to industrial equipment, automotive, aerospace and defense,
high tech, oil/gas and military/public sectors. In the analysed
automotive context we observed issues that are almost similar
to what has been outlined at the end of Aberdeen Group study.
So, we hope that our analysis, that is based on a limited
context (i.e. automotive), can be successfully translated into
other similar contexts, as well.

Our initial approach is based on an empirical study through
direct observations about how engineers work on simulations
and discussions with them. At beginning we have tried to
identify error-prone, repetitive and time-consuming tasks. So,
we have focused on single team member tasks and we have
identified initial functional requirements. In this step we have
realized that many tasks (e.g. simulation finding, document
generation) are not covered by CFD software, because they
depend on internal organization and we have pointed out the
need for simulation data sharing.

Our claim is that industries require many services upon and
correlated to CFD simulations. These services are important
in order to reduce costs, time and to improve engineers’ tasks.
Besides, there is a strong need to increase the integration of
CFD Workflow into the overall product development process.
So, our idea is to design an architecture for CFD Workflow
management that supports the creation of services within the
CFD Workflow, independently by and upon CFD software.
This section describes some gathered functional requirements
and it covers non-functional requirements that have led the
architecture design.

A. Functional Requirements

The following are the identified actions to perform in order
to improve industrial daily CFD engineers’ work:

• centrally manage simulation data;
• identify and automate tasks through software tools;
• take advantage of wizards and templates.

1) Centrally manage simulation data: The aim is to improve
the simulation data accessibility and to promote knowledge
sharing among engineers.

We observed that this action is already performed by storing
all the simulations data in a proprietary file format within one
or more shared network folders. Engineers usually need to find
the old simulation data stored in the repository to compare
the results. It is interesting for the engineers to search the
simulations stored in the central repository by the simulation
revision name, the physic properties and other tags defined by
the end-users. The simulation files are often binary files, so the
engineers can not use the search tools based on text content.

We think that simulation data tagging, linking and searching
are interesting features. The file system has a hierarchical
structure and it is not enough to meet these described criteria.

According to Aberdeen Group study [2], in order to improve
their performances, companies should “Centrally manage pre-
vious simulation results”. It is not useful for engineers to
store centrally only the simulation results: they need both
the simulation results and the configuration case data. So, we
decided to centrally manage the configuration case with all
settings (e.g. boundary conditions, physical properties, the max
number of iterations), the solving logs, the convergence charts
and results (i.e. contour-plots and tabular data). Over the years
industries perform a high quantity of simulations and each
simulation file takes up over ten gigabytes due the geometry
model details. Engineers usually need to find simulation data
to compare the results.

We think that a central repository for all simulation data
provides an historical view for a given project and a strategic
competitive advantage for the future. Simulation central repos-
itory is the knowledge base on which apply metrics, perform
statistics and make strategic decisions.

In order to centrally manage simulation data, we have
identified the following functional requirements: (1) centrally
manage configuration case, solving logs, convergence charts
and results; (2) simulation data tagging; (3) search based on
simulation data and simulation tags; (4) automatic documents
generation from simulation data and (5) version control.
2) Tasks automation: Here we report some examples of tasks
to automate, considering that this paper focus on the archi-
tecture design rather than on a particular tool. CFD Workflow
needs a better integration in the product development process.
For example, engineers create many documents based on the
simulation experiments and results. They always use the same
document structure but with different data. So, the first task to
be automate is the automatic document generation. The first
time engineers will prepare n document templates, each one
with its basic structure, and will store them in the system.
In order to generate documents, the engineer then selects
one or more simulations and chooses a document template;
the system merges the simulations data and results with the
chosen template. The CFD team is highly skilled and has a
lot of experience with command line tools, but as reported in
literature this requires high training costs. A common CFD
engineer task is to run simulations using the HPC systems.



Usually, engineers use a small set of commands through an
ssh connection to submit/kill a job and to monitor the running
jobs. Engineers need to do some other operations in order to
monitor the simulation convergence data. Our idea is to create
a Monitoring Tool: a workbench that provides in one view
the job queues and the convergence charts for the running
simulations.
3) Take advantage of wizards and templates: Wizards and
templates guarantee that all team members work in the same
way. Besides, wizards incorporate the best practices and sup-
port less experienced users. Both wizards and templates are a
good way to support engineers in the repetitive and error-prone
tasks.

B. Non-Functional Requirements

Our goals are to identify leading non-functional require-
ments and to find a trade-off among them. Non-functional
requirements gathered from our analysis are: extensibility,
modularity, open, portability, Intranet-based and deployment.
1) Extensibility: Extensibility is the ability of a software sys-
tem to allow and accept significant extension of its capabilities
without major rewriting of code [6]. Extensibility answers to
the question: how easy is it to add new functionality to the
system [7]? In order to add future functionalities that depend
by industry’s product development process and by particular
CFD team, the system should be open for future extensions.
Industries want functionalities tailored to their needs and they
want to develop their in-house tools. Industries initially use the
base set of functionalities, then in order to accommodate future
needs they can develop new functionalities. For example, each
industry uses its internal document template; the system must
be extensible in order to support future format and future
changes in document templates.
2) Modularity: Modularity is the degree to which a system or
computer program is composed by discrete components such
that a change to one component has minimal impact on other
components [6]. A module is a logically separable part of a
program [6]. The software system is made by modules that fit
together to create the overall system. Modularity advantages
are: module replacement, creation of new modules and a well-
structured system. With modularity, it is possible to identify
which services are provided by each module. The system is
tailored to customer needs: each customer can compose a
system loading just the need modules.
3) Open: The system must use open protocols and open
formats to avoid vendor lock-in and to be interoperable with
other systems. Vendor lock-in is the phenomenon that causes
customer dependency on given vendor with regard to specific
good or service [8]. We observed a potential CFD software
vendor lock-in data format that occurs when end-user stores
data in a proprietary format and the proprietary software
does not have import/export functions to an open format.
CFD Workflow requires the use of many different software:
CAD/CAE, CFD and post-processing software. Before choos-
ing a software, industries estimate the benefits in using open
formats. Nowadays, industries use open formats to store and

to exchange geometry data between CAD/CAE software and
pre-processing tools. IGES and STEP are well-established
open formats for geometry data exchange. Industries usually
do not store CFD simulation data in an open format. CFD
General Notation System (CGNS) is a standard for CFD input
and output, grid, flow solution and boundary conditions [9].
CGNS concerns with CFD data representation and can be
used also for data exchange [10]. A software must have
import and export options [11] to open formats, but not
all software vendors offer these functionalities. In our case
study, simulation data such as geometry mesh, physical model,
convergence data and results are stored into proprietary file
format and the proprietary software does not have the export
option to CGNS format. This practice is due to proprietary
software adoption. Only simulation results are exported in a
neutral format.
4) Portability: Portability is how easily a system or component
can be transferred from one hardware or software environment
to another [6]. Our goal is to build tools and automated
procedures that run independently by CFD software. We can
say that tools are portable across CFD simulators.

Many CFD software provide a script language which en-
ables engineers to extend software functionalities. Over the
years, engineers have written their own scripts to automate
the execution of tasks. Scripts are very important for the
manufacturers because they contains the experience of the
engineers, the internal procedures and the business process
practices. Scripts can increase productivity because they auto-
mate tasks, but they can also create a potential vendor lock-in
problem: scripts are fitted on particular CFD software features
and are not portable across CFD software. Our aim is to create
automated procedures that run over any CFD software. A
solution to vendor lock-in anti-pattern is to design the system
with an isolation layer [12].
5) Intranet-Based: Engineers access to services, tools and
resources within the company Intranet. In using the system,
engineers expect to have Intranet performances, such as high
bandwidth, low latency and good response time.
6) Deployment: Deployment into an existing industry can be
expensive especially when it must be done on each client
workstation. System design must take in account the future
deployment costs. The system should reduce costs and time
for deploying and updating the system on all clients.

III. SYSTEM ARCHITECTURE DESIGN

This section reports the design decisions made to achieve the
requirements presented in Section II. Here, we intentionally
do not mention any particular software technology, and we
speak about patterns, architectures and protocols to guarantee
a future reproducibility of our architecture. In the first part we
describe a client/server system architecture taking in account
both hardware and software, then we give more details about
the server-side software architecture.
A. System architecture

Our system has a client/server architecture (Fig. 2). The
clients are web-based, so the end-users use their web browser



Fig. 2. System Architecture.

to access to the simulation data, HPC resources and CFD
functionalities provided by the central web server. The server
exchanges data with the simulation repository that provides
the persistence service. The simulation repository stores the
simulation data: an important asset for the industry over the
years. It stores data in an open format (e.g. CGNS) and
guarantees version control. We aim to store and to put under
version control geometry model, physics model, boundary con-
ditions, charts, simulation results, contour plots and generated
documents. The server does CRUD (create, read, update and
delete) operations on the repository. However, nowadays each
simulation file takes up gigabytes of disk space and over the
years the number of simulations grows incredibly: it is not
practical to store all data for all simulations. Manufactures
(based on their needs) should choose which data must be
stored. Often, engineers perform parametric studies on the
same geometry model changing only the physic values. In
these cases, it is convenient to store the geometry only one
time and correlate simulation results, physical model and the
configuration case to the same geometry model. Sometimes,
it is convenient to not apply version control to the geometry
model. In our analysis, CFD engineers do not run and solve
an old simulation, they only need data for results compare.
Engineers can access to configuration case made by physical
model, charts, tabular results and contour plots without run
CFD software again. We add metadata and services (like
versioning) to existing simulation data.

Industries use CFD simulators that only work with propri-
etary file format not allowing the import/export in an open
format. In this situation it is still feasible to have also a vendor
format independent central repository that stores simulation
data in a neutral format. Our solution is to convert proprietary
format data into an open format and to adopt an isolation
layer [12] between CFD simulators and tools (the solution is
detailed exposed in the next section III-B).

The central web server interacts with other servers and
repositories. For example, companies usually already have in-
ternal servers that provide security and authentication services,
so our architecture does not directly provide them but relies
on other existing Intranet servers. The web server directly

Fig. 3. System Requirements Mapping.

connects to HPC resources and it makes them available to
end-users. Job submission, job kill, simulation monitoring and
real-time convergence charts are all services available to non-
HPC system experts.
B. Server-side software architecture

The server-side software architecture (Fig. 4) consists of
three layers. The tools are in the top layer. A CFD tool is an
end-user GUI that provides one or more useful functionalities
to engineers. The middle layer is the isolation layer and finally,
the bottom layer consists of CFD software wrappers.

Each tool performs a well-defined engineering task. Some
of the tools depend on the internal team organization and
by the business process. For example, document generator
tool accepts document templates and creates documents from
them. The server-side architecture is based on a pure plug-
in architecture in which everything is a plug-in [13]. Each
box of the software architecture (Fig. 4) is a plug-in. To
achieve extensibility and modularity requirements, we choose
a pure plug-in architecture because it supports the extensibility
by plug-ins. Every plug-in provides well-defined hook points
called extension points that describe the way to extend the
plug-in’s functionality. Other plug-ins can add new function-
alities by implementing an extension point. A plug-in can be
modified or replaced by another equivalent implementation.

Fig. 4. Server-Side software architecture.

Our architecture supports the concurrent use of multiple
CFD software for companies who have decided to employ,
for example, both commercial CFD software (e.g. CCM+
developed by CD-adapco) and OpenFOAM as reported in [11].

Plug-in based architecture meets the extensibility and mod-
ularity non-functional requirements. Open data formats and
isolation layer meet the open and portability non-functional
requirements. Open protocols and open formats guarantee the
future interoperability with other software. The client/server
and the web-based architecture avoid the installation of the
software on each workstation. Worries about responsiveness



and bad tolerance of networks outages, typical disadvantages
of these architecture, are mitigated by the Intranet setting.

IV. FLOASYS PROTOTYPE ARCHITECTURE

Our aim is to design and implement an architecture that
provides software reusable-building boxes to create new CFD
tools upon any CFD simulator. This section presents the
prototype based on the architecture described in Section III: it
is currently under development and on site testing. It has a pure
plug-in architecture [13] based on the Eclipse Platform [14].
Floasys’s plug-ins can be arranged in three layers as shown
in Fig 5: (1) The top layer consists of CFD tool plug-ins.
Each tool can add a new perspective or can add a new view
to an existing perspective. Usually, tool design is based on
the MVC pattern. (2) The middle layer is the isolation layer.
It provides the core API and the common simulation model.
Plug-ins in the middle layer provide services to up layer tools
by abstracting CFD simulators on bottom layer. (3) In the
bottom layer, simulator wrappers communicate and exchange
data with CFD simulators.

Fig. 5. Floasys Architecture.

Floasys is a web-based client/server architecture (Fig. 6).
We use the Eclipse Remote Application Platform (Eclipse
RAP) to develop the web application. RAP core imple-
ments [15] the Half Object Plus Protocol pattern [16]. Our
assumption is that the system runs on the industry Intranet
infrastructure, so the use of HOPP pattern is not in contrast
with the end-to-end principle [17] because Intranet provides
high bandwidth, high availability and low latency compared
to Internet connection. The server-side software needs a JEE
servlet container (e.g. Apache Tomcat) and a framework
for the plug-in life cycle management (e.g. Eclipse Equinox
OSGi).
A. Simulation Model

The Simulation Model (SimModel) stores the simulation
data. Its aim is to store everything about the simulation not
only the geometry, so it stores the configuration case with
all settings and results. For example, it stores the boundaries,
the physical properties, the stopping criteria, the log files, the
outcomes, the charts, the tabular data, the contour plots and the
generated documents. SimModel is a tree-like data structure

Fig. 6. Client/Server architecture.

as in CGNS standard [9], so it can store each information
about the simulation with a tree node. The system can also
link other metadata (e.g. the tag names) to the simulation by
adding a new tree node. CFD tools should be independent from
any particular CFD simulator and should be used across many
CFD simulators. To obtain such simulator independence, we
have developed the SimModel plug-in showed in the middle
layer of figure 5. SimModel is the only joint point between
CFD simulators on bottom layer and CFD tools on top layer.
Tools implementation is based only on the simulation model
and they interact only with simulation model.

B. Core API

From our framework point of view, CFD simulators are
black boxes which we can extract model information from
and interact with, in order to change some properties. Each
simulator has its own internal data model; it consists of
geometry model, regions, boundaries, physical properties and
so on. Framework API allows to extract simulation data stored
inside a proprietary CFD simulator to obtain the framework
simulation model for a given simulation. Framework relies on
CFD wrapper simulator implementation to extract or change
simulation data. At the end of the day we are interested in
collecting simulation data and building the simulation model.
We store the built simulation model in an open source format
(i.e. xml) to avoid the vendor lock-in issue and to provide
other services such as the version control and the simulation
finding by its data. Potentially, each CFD tool works indepen-
dently by the CFD engine technology (e.g. operating system,
programming language, proprietary and open source software)
because each tool interacts directly with the simulation model.

C. CFD Wrappers

CFD wrappers embed CFD software features and provide
them through a common interface defined by the Core API.
We have categorized CFD simulators by the source code
availability and open protocols implementation. CFD soft-
ware wrappers currently available in our prototype are: Star-
CCM+ on Torque cluster and OpenFOAM CFD codes. Star-
CCM+ is a proprietary software developed by CD-adapco
while OpenFOAM is open source; both CFD software do
not directly implement an open format (e.g. CGNS). For



OpenFOAM it exists a converter called foamToCGNS available
into OpenFOAM Extend Project. From the technical point of
view, the interaction between CFD simulators can be based on
simulator’s API invoking, command line simulator execution
or network based interaction. The implementation of a wrapper
is a non trivial task and is widely studied; literature describes
many techniques and automate wrapper generators [18] (e.g.
CORBA wrappers generators). Star-CCM+ Wrapper on bot-
tom layer (Fig. 6) interacts with a computer cluster through
SSH to submit jobs, to handle job queue, to monitor the
running simulations, to modify simulation file and to extract
information from simulation.

V. CFD TOOL EXAMPLES

This section describes briefly some CFD tools actually de-
veloped and based on the above architecture. A CFD tool is an
end-user GUI that provides one or more useful functionalities
to engineers. Currently available tools are: the repository tool,
the simulation controller tool, the parametric study tool, the
simulation monitoring tool and the document generator tool.

Floasys application GUI is based on the perspective and
view concepts, a traditional GUI organization in Eclipse [19].
Each perspective is a visual container for a set of views.
Perspectives support the task oriented interaction [20], the
CFD engineer will use a different perspective depending on
the task to perform. Each tool can contribute with a new set of
views arranged in one or more perspectives or it can contribute
to an existing perspective with a new view.

The Simulation controller perspective shows data about the
selected simulation; it shows simulation data in a tree-like
structure (Fig. 7). This perspective is the main perspective
because it allows to access to other tools such as document
generator tool and parametric study tool. For example, from
the simulation tree the user can drag-and-drop simulation items
in the parametric study tool. In an industrial context, CFD
engineers perform several simulations on the same model by
changing the set of parameters values. Engineers run many
simulations about the same vehicle model; each simulation
runs with a different inlet velocity value and produces a
different result. Finally, all results are compared together.
Parameter study aim is to assess how a variation of a parameter
value affects simulation solution and which impact has on
design. Parameter study can be laborious, tedious, repetitive
and error-prone task without an automated tool [21].

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help and the sup-
port of Comprensorio CRF Elasis Pomigliano (Fiat Group
Automobilies) and, the interactions with Aerothermal CFD
team. In particular, the work has been significantly improved
by the interesting and stimulating discussions with Antonio
Cucca and Ugo Riccio. The authors also thank the anonymous
reviewers for useful comments.

REFERENCES

[1] M. Boucher, “The ROI of Cuncuttent Design with CFD,” 2011.
[2] C. K.-R. Michelle Boucher, “Getting Product Design Right the First

Time with CFD,” 2011.

Fig. 7. Simulation controller perspective.

[3] D. H. Michelle Boucher, “Engineering Envolved: Getting Mechatronics
Performance Right The First Time,” 2008.

[4] J. Weber, Automotive Development Process. Springer, 2009.
[5] E. Sindhu, A. Lee, and S. M. Salim, “Coves: an e-business case study

in the engineering domain,” Business Process Management Journal,
vol. 10, no. 1, pp. 115–125, 2004.

[6] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Ra-
datz, M. Yee, H. Porteous, and F. Springsteel, “IEEE Standard Computer
Dictionary: Compilation of IEEE Standard Computer Glossaries,” 1991.

[7] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[8] R. Shah, J. Kesan, and A. Kennis, “Lessons for open standard policies:
a case study of the Massachusetts experience,” in Proc. of the 1st inter.
conf. on Theory and practice of electronic governance, 2007, pp. 141–
150.

[9] T. H. Christopher L. Rumsey, Bruce Wedan and M. Poinot, “Recent
Updates to the CFD General Notation System (CGNS),” 50th AIAA
Aerospace Sciences Meeting, 2012.

[10] M. Poinot, M. Costes, and B. Cantaloube, “Application of cgns software
components for helicopter blade fluid-structure strong coupling. 31st
european rotorcraft forum,” Florence, Sept, 2005.

[11] V. Bertram and P. Couser, “Aspects of Selecting the Appropriate CAD
and CFD Software,” 9th Conf. Computer and IT Applications int the
Maritime Industries (COMPIT). Gubbio., 2010.

[12] W. H. Brown, R. C. Malveau, and T. J. Mowbray, “Antipatterns:
refactoring software, architectures, and projects in crisis,” 1998.

[13] D. Birsan, “On plug-ins and extensible architectures,” Queue, vol. 3,
no. 2, pp. 40–46, Mar. 2005.

[14] J. Des Rivières and J. Wiegand, “Eclipse: a platform for integrating
development tools,” IBM Syst. J., vol. 43, pp. 371–383, 2004.

[15] Last checked on May 24, 2013. [Online]. Available:
http://eclipsesource.com/blogs/2013/02/01/rap-2-0-countdown-15/

[16] J. O. Coplien and D. C. Schmidt, Eds., Pattern languages of program
design. NY, USA: ACM Press/Addison-Wesley Publishing Co., 1995.

[17] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” ACM Trans. Comput. Syst., pp. 277–288, 1984.

[18] S. J. Eric Wohlstadter and P. Devanbu, “Generating Wrappers for
Command Line Programs: The Cal-Aggie Wrap-O-Matic Project,” Proc.
of the 23rd Inter. Conf. on Software Engineering, 2001.

[19] D. Rubel, “The Heart of Eclipse,” Queue, 2006.
[20] D. Springgay, “Using perspectives in the eclipse ui,” Eclipse Corner

Article, Object Technology International, Inc, 2001.
[21] M. Yarrow, K. M. McCann, R. Biswas, and R. F. V. d. Wijngaart,

“An Advanced User Interface Approach for Complex Parameter Study
Process Specification on the Information Power Grid,” in Proc. of the
1st IEEE/ACM Inter. Workshop on Grid Computing, 2000, pp. 146–157.


